If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+2t-1680=0
a = 1; b = 2; c = -1680;
Δ = b2-4ac
Δ = 22-4·1·(-1680)
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-82}{2*1}=\frac{-84}{2} =-42 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+82}{2*1}=\frac{80}{2} =40 $
| 4(2r=8)=88 | | 19=3p+7 | | 1+4x+2x+11=90 | | u+4.59=7.64 | | 3x-9-8+12x=2-4x* | | (8+4i)+(12-i)=0 | | 4x+5+6x+5=90 | | 81-4b^2-16=0 | | 4b+3b=-21 | | 9x+12=3x+4 | | 2x+50x+2=624 | | x-5.3=2.2 | | -0.5x+6.65=-0.1x+4.65 | | -82+13x=2x+83 | | -3x-54=96-13x | | b+8=-15 | | 5^2k=1 | | -4=2(w-8) | | 3-(x+2)=4=x | | -49-13x=31-9x | | -(2)+y=-2 | | 5(4x+7)=-10+5 | | b-10=-33 | | -131-8x=214+15x | | 8(-4a-8)=-288 | | u/4=72 | | 0.5x-0.6x+3=4 | | 2x-156=11x+168 | | x/4-3=12 | | x-122=7x+88 | | b/4–2=2 | | 3x-100=17 |